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ABSTRACT 

It is shown tha t  for an  L l -p redua l  space X and a countable  linearly 

independen t  subset  of  e x t ( B x *  ) whose norm-closed linear span  Y in X* 

is w*-closed, there  exists  a w*-cont inuous  contract ive  project ion from 

X* onto Y. This  result  combined with those  of Pelczynski  and  Bour- 

gain yields a simple proof  of the  Laza r -L indens t r aus s  t heo rem tha t  every 

separable L l -p redua l  wi th  non-separable  dual  conta ins  a contract ively  

complemen ted  subspace  isometric  to C(A) ,  the  Banach  space of  func- 

t ions cont inuous  on the  Cantor  d i scon t inuum A. 

It is fur ther  shown tha t  if X*  is isometric to /1 and  (e*~) is a basis 

for X*  isometrical ly equivalent  to the  usual  ~l-basis,  t h en  there  exists  

a w*-convergent  subsequence  (emn)  of (e*) such tha t  the  closed linear 

subspace  of X*  genera ted  by the  sequence (era2 n - e*~2~_1 ) is the  range 

of a w*-cont inuous  contract ive  project ion in X*.  This  yields a new proof  

of Zippin 's  resul t  t ha t  co is isometric to a contract ively complemen ted  

subspace  of X.  

1. I n t r o d u c t i o n  

A Banach space X is said to be an Ll-predual provided its dual X* is isometric 

to LI(#) for some measure space (~, E, #). Perhaps the most natural example 

of an Ll-predual is C(K), the Banach space of real-valued functions continuous 

on the compact Hausdorff space K, under the supremum norm. Ll-preduals 

were the subject of an extensive study in the late 1960's and early 1970's. For 
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a detailed survey of results on Ll-preduals we refer to [13]. For the connection 

between Ll-preduals and infinite-dimensional convexity we refer to the recent 

survey article [8]. 

For some time it was thought that every Ll-predual is isomorphic to a C(K)-  

space for suitable K, but the example given by Benyamini and Lindenstrauss [3] 

disproved this. The present paper is concerned with the existence of subspaces of 

a separable infinite-dimensional Ll-predual X, isometric to C(K)-spaces. It was 

proven by Zippin [27] that X contains a contractively complemented subspace 

isometric to co. When X* is non-separable, Lazar and Lindenstrauss [16] proved 

that X contains a contractively complemented subspace isometric to C(A), where 

A denotes the Cantor discontinuum. These results complement each other in the 

sense that neither of them implies the other. 

In the present paper we demonstrate a unified approach towards these results. 

Our method consists of establishing Theorem 3.2 which describes a technique for 

constructing a strictly increasing sequence (Vn) of finite-dimensional subspaces 

of X*, where each V~ is isometric to some ~ ,  for which there exists an almost 

commuting sequence (Pn) of w*-continuous contractive projections in X* such 

that ImP~ = Vn, n E N. We recall here that a sequence (P,~) of uniformly 

bounded projections in a Banach space E is said to be a lmos t  c o m m u t i n g ,  

if limk sup,~>k IIPkP~ -- Pkll = 0. The proof of Theorem 3.2 is an elementary 

application of the principle of local reflexivity [17], [10]. We apply Theorem 3.2 

in order to provide an alternative proof for the following result 

THEOREM 1.1: Let X be an Ll-predual and let K be a countable subset of 

ex t (Bx . )  such that K n ( - K )  = ~. Suppose that the norm-dosed linear span Y 

of K is w*-closed in X*.  Then there exists a w*-continuous contractive projection 

from X* onto Y .  

We remark that  Theorem 1.1 is a consequence of the following result formulated 

by Lazar and Lindenstrauss as Corollary 1 in [16]: 

Suppose that X is a Banach space so that X* is isometric to LI(#) .  Let F be 

a face of B x .  and denote by H the convex hull of F U ( - F ) .  Assume that H is 

w*-closed and metrizable. Then, there exists a w*-continuous, a]fine, symmetric 

retraction of Bx* onto H.  

Evidently, this result yields Theorem 1.1. However, the authors of [16] do not 

offer a detailed proof of this result and moreover, via their preceding discussion, 

seem to require that the face F be w*-closed. Note that if F is w*-closed, so is 

H but the converse is not true in general. We also note that  the proof of the 

aforementioned result that appears in [13] is false. Specifically, the map ¢ defined 
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in the proof of the Corollary on page 224 of [13] is not convex. 

Theorem 1.1 has applications in the study of t l-preduals [1], [9]. As a conse- 

quence of Theorem 1.1 we obtain 

COROLLARY 1.2: Let X be a separable Ll-predual and let K be a countable, 

w*-compact subset of e x t ( B z . )  such that K N ( - K )  = 0. Then there exists a 

contractively complemented subspace of X isometric to C(K) .  

This corollary combined with the results of Pelczynski [22] and Bourgain [4] 

yields the next 

COROLLARY 1.3: Let X be a separable Ll-predual such that X* is non-separable. 

Then there exists a contractively complemented subspace of X isometric to C( A ). 

This result was obtained in [16] with a different method. Their proof is based 

on a remarkable affine version of Michael's selection theorem [19] and makes use 

of a non-trivial result established in [14]. 

Another application of Theorem 3.2 is the following 

THEOREM 1.4: Let X be a Banach space such that X* is isometric to ~1, and let 

(e~) be a basis for X* isometrically equivalent to the usual £l-basis. Then there 

exists a w*-convergent subsequence (e* ) of (en) such that the subspace gener- 

ated by the sequence (e*2. - e~n~_l) is the range of a w*-continuous contractive 

projection in X*. 

Theorem 1.4 combined with Corollary 1.3 yields an alternative proof of Zippin's 

result [27] 

COROLLARY 1.5: Every separable in~nite-dimensional Ll-predual X contains a 

contractively complemented subspace isometric to Co. 

2. P r e l i m i n a r i e s  

We shall make use of standard Banach space facts and terminology as may be 

found in [18]. In this section we review some of the necessary concepts. All 

Banach spaces under consideration will be over the field of real numbers. By the 

term s u b s p a c e  of a Banach space X we shall mean a closed linear subspace. 

We let B x  stand for the closed unit ball of X,  while X* denotes its topological 

dual. A subspace Y of X is said to be c o m p l e m e n t e d  if it is the range of a 

bounded linear projection P: X ~ X. When IIPI] = 1, Y is a c o n t r a c t i v e l y  

complemented subspace of X. 
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/ i  denotes the Banach space of absolutely summable sequences under the norm 

given by the sum of the absolute values of the coordinates. The usua l / i -bas i s  

is the Schauder basis of gi consisting of sequences having exactly one coordinate 

equal to 1 and vanishing at the rest of the coordinates, t k, where k E N, is the k- 

dimensional subspace of i1 spanned by the first k members of the usual/1-basis.  

A sequence (Xn) in some Banach space is i s o m e t r i c a l l y  e q u i v a l e n t  to the usual 
n n a r t  / l-basis,  if [[ ~ = i  aixd[ = Y]-i=i lad, for all n • N and scalar sequences ( ~)i=l- 

A finite sequence k (xi)i=i in some Banach space is isometrically equivalent to the 

usual /k-basis ,  if [[ k k k (add=l- -- ~ i = i  lad, for all scalar sequences E =I a xd[ 
co stands for the Banach space of null sequences under the norm given by the 

supremum of the absolute values of the coordinates, t ~  denotes the Banach 

space ]R n under the norm given by the maximum of the absolute values of the 

coordinates. 

Given a measure space (f~, E, #) with tt positive, Li(tL) denotes the Banach 

space of equivalence classes of absolutely integrable functions on ~2 under 

the norm [[f[I = fe  Ill dtz" L ~ ( # )  denotes the Banach space of equivalence 

classes of essentially bounded E-measurable functions on ft under the norm 

ess sup  a 

An L i - p r e d u a l  is a Banach space X such that  X* is isometric to Li(tt) for 

some measure space (~, E, it). According to a result of Pelczynski [21], Propo- 

sition 1.3, there exists another measure space ( ~ ' , E ' , u )  with Li(u)  isometric 

to Ll(#)  and such that  Li(u)* is canonically isometric to L~(u) .  Thus in the 

sequel, by an Ll-predual  we shall mean a Banach space X with X* isometric to 

some Li(#)  such that  Ll(#)* is canonically isometric to L~(# ) .  

Given a linear topological space V and A C V, we let co(A) denote the convex 

hull of A. Let now K be a convex subset of V. A point x • K is called an 

e x t r e m e  po in t ,  if whenever y, z are in K and x = ay + (1 - a)z for some 

0 < a < 1, t h e n x  = y = z. We let ext(K)  denote the set of extreme points 

of K.  It  is well known that  for an Li-predual  space X with X* isometric to 

Li(#) ,  ex t (Bx . )  consists precisely of functions of the form a)(A/#(A),  where 

a • { -1 ,  1}, A is an a tom with 0 < #(A) < cc and XA stands for the indicator 

function of A. 

We next recall the important  principle of local reflexivity [17], [10] (cf. also 

[26]). 

THEOREM 2.1: Let X be a Banach space and let E C X** and F C X* be finite- 

dimensional subspaces. Given e > 0, there exists an invert/hie linear operator 

T: E --+ X such that [[T][]]T-i[TE[] < l + e ,  T ] E A X  = idEnx,  and f (Te )  = e( f )  



Vol. 128, 2002 ON CONTRACTIVELY COMPLEMENTED SUBSPACES 

for all f C F and e C E. 
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3. A c o n s t r u c t i o n  of  w*-con t inuous  c o n t r a c t i v e  p r o j e c t i o n s  

This section is devoted to the proof of Theorem 3.2 which provides a method of 

constructing w*-continuous contractive projections onto certain finite- 

dimensional subspaces of X* = LI(p) ,  isometric to llk. Repeated applications 

of Theorem 3.2 will in turn enable us to construct a sequence (Pn) of almost 

commuting w*-continuous contractive projections in X* such that  ( ImPn)  is 

strictly increasing and Im Pn is isometric to some ~ ,  for all n E N. In order 

to construct w*-continuous projections onto subspaces of X* isometric t o /1 ,  we 

shall make use of the following 

PROPOSITION 3.1: Let X be a Banach space and let Y be a w*-closed subspace 

of X*.  Assume that there exists a net {Y,x},kEA of w*-closed subspaces of Y with 

Y:~ C Y~2 whenever A1 <_ )~2 in A, and such that LJ~eA Y~ is norm-dense in Y.  

Assume further that each Y~ is the range of a w*- continuous projection P~ in 

x * ,  so tha t  sup  IIP II -< M < oc, and lima sup~_<g IIP P -e ll = 0. Then there 

exists a w*-continuous projection P from X* onto Y with ]IPt] < M.  

Proof'. B y  is w*-compact. By Tychonoff's theorem we infer that  K = 

[I~*esx. M B y  is compact when endowed with the cartesian topology. We can 

now identify {PA}~eA with a net in K to obtain a sub-net {P~'}~'eh'  of {P~}~eh 

which converges to an element P of K.  Since Y is w*-closed in X*, P induces 

a bounded linear operator from X* into Y, which we still denote by P.  Clearly 

Px* = w* -lim;~,eh, P~,x*, for all x* c X* and thus ]IPI] < M. Our assumptions 

yield that  Px* = x*, for all x* E ~J~eA Y~ and hence P is a projection onto Y. 

We next demonstrate that  P is w*-continuous. By a classical result [12] it 

suffices to show that  for every net (x*) in Bx* such that  w* - limv x* = 0, we 

have that  w* - l i m v  Px* = O. Note that  IIPx*ll <<_ M,  for all u, and let y* E M B y  

be any w*-cluster point of (Px*)v. We will show that  y* = 0. To this end set 

5~ = sups< ,  IIP~P, - P~]]. Then ]IP~P - PAll < hA, as P~ is w*-continuous. 

It  follows that  IIP~Px* - PAx*]I < hA, for all A and v, and thus as PA is w*- 

continuous, we obtain that  IIPAy*]I < 5~, for all A C A. Hence Py* = 0. Because 

y* E Y and P is a projection onto Y, we deduce that  y* = 0, completing the 

proof of the assertion. | 

We next pass to the key result which is related to Lemma 3.1 and Corollary 

3.2 of [10]. 
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THEOREM 3.2: Let X be an Ll-predual and let V be a subspace of X* isometric 

5 -  to tk.  Let  ( i)i=l be a t~nite sequence of positive scalars and assume that there 

exist w*-continuous linear operators Ti: X* --+ V, IITill < 1, i < n, as well as 

linear operators Ri: Y --+ V,  [IR~[I <_ 1, i _< n, so that I[R~T~ - Tdl < ~, for all 

f q e x t ( B z .  i < n. Assume further that there exist collections of vectors ( j ) j=l  C ) 

v q q a n d  ( J ) j = l  C Bv ,  with (fJ)j=l linearly independent, such that llR~vy -T~Zjll < 
5i for all i <_ n and j <_ q. Then there exists a w*-continuous linear operator 

T: X* --+ V, [IT[I < 1, such that [[RiT - T,[I < 5, for all i <_ n, and T f j  = vj for 

all j <_ q. 

The  proof  of this result will follow after  establishing the next  

PROPOSITION 3.3: Under the hypothesis of  Theorem 3.2, for every ¢ > 0 

there exists a w*-continuous l inear operator S: X* -+ V,  Ilsll _< 1, such that 

[IRIS - Till < 6i + e and I[Sfj - vii t < e for all i <_ n and j _< q. 

Proof: Let  (et)~=l be a basis for V isometrically equivalent to the usual g~-basis. 

Since Ti is w*-continuous and IITiN < 1, there exist vectors k (zi,t)t=l in B x  such 

tha t  Tix* k . x* X*.  = ~-~d=l X (Zi,l)el for all E There  also exist scalars (ai,t,s), 
k 

i <_ n, l < k, s < k, such tha t  Riet = ~ s = l  ai,~,~e~ for all i < n and l < k. 
k 

Finally, there exist scalars (vj,l), j < q, 1 < k, such tha t  vj = ~l=1 vj,tet, j < q. 

Observe t ha t  for x* ~ X* and i < n we have 

s = l  \ / = 1  -- l = l  s = l  

k (Et=la , ,1 ,~x  (zn,,)) - x * ( z i , 8 ) l  = I[R,T,~x* -T ix* l [  < 6,, for all 

x* 6 Bx* and i < n. Thus  

k k 

1 
for all choices of signs (ps)sk=l and all i _< n. 

k k Similarly, R~vj = ~ = ~ ( ~ Z = l  ai,t,~vj,z)e, for all i < n, j < q, and thus 

k 
(2) Q _l ai,,,,vj,O _ = llRivj - TJ3,, < 5i, j <_ q, i <_ n. 

We first show tha t  there exist vectors (x[*)k=l in Bx** = BL~(t~) such tha t  

x~*(fj)  = vj,, for a l l /  < k, j < q, and II~k~=lps[(~,k=lai,t,~x~ *) -- zi,~]N < 5~, 

for all i < n and all choices of signs k (P~)s=x- Indeed, let a l , . . .  ,aq be signs and 
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let A~, . . . ,Aq  be distinct atoms in (fl, E ,p )  such that fj  = ajXA.~/p(Aj) for 

all j < q. We can assume without loss of generality that the Aj's are pairwise 

t **~k in Loo(p) as follows: disjoint. We define ~x~ n=l  

x~*lAj = ojvj,z, j < q, while x~'*lfl\  U Aj = z,~,llft \ U Aj, 
j~_q j~_q 

where we regard zn,l as an element of X** = L~(p ) .  Clearly, I[x~*H < 1 and 

X**{ f -~ _ _ I '. J., ---- fA~ ajvJJaJXAJ/#(Aj)dP = vy,z, for all j < q and 1 < k. 

Given signs Pl, .  •., Pk and i < n we have that 

(3) 
k k 

s~=lPs[(l~=l ai,l,sx~*) -zi,s][~\j~<_q Aj 

k k 

<_ s~lps[(Eai , l , sZn, l ) - -Zi , s )  <(~i b y ( l ) .  
-- " l=1 

We next fix signs P l , . . . ,  Pk, i < n and j < q. We set 

k k 

s = l  L \ l = l  

We claim that IHi,jl < 5i, p-almost everywhere in Aj. Indeed, note first that 

fA~ zi,~dp = ojp(Aj)fj(zi ,s) for all s _< k, and thus 

k k 

<_#(Aj) k.E_l = <hi#(Aj),  by(2) .  

On the other hand, setting Bi,j = {t C Aj: IHi,/(t)l > 5i} and taking into account 

that Aj is an atom, we infer that p(Bi,j) -- O. Indeed, otherwise, p(Bi,j) -- 
p(Aj) and thus IHi,jl >_ 5i, p-almost everywhere on Aj. But also, as Aj is an 

atom, Hi,j has a constant sign p-almost everywhere on Aj and so I fAj Hi,jdPl >- 
(fip(Aj), contradicting (4). Therefore, p(Bi,j) = 0 and hence [Hi,j[ < 5i, p-almost 

everywhere in A j, as claimed. We conclude that 

k k 
IIV" rt~-" a x **~ - zi,s]lAjll < 5i, 

s = l  l = l  

for a l l i _<n ,  j < q ,  
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and all choices of  signs a (Ps ) s= l .  Combining  with  (3) we deduce that 

k k 

IIEP* [(E ai,t,sx;*)- z~,=] II-< 
s= l  l = l  

for all i < n and all choices of  signs k 

We next set W = [{x~'* : l < k}  U {zi,8 : i _< n , s  _< k}] and choose  0 < 5 < c. 

Th eorem  2.1 yields a linear operator U: W --~ X ,  I[U[I _< 1 + 5 ,  so that  UIXNW = 
idxnw and g(fj)  = fj(Ug), for all g • W and j _< q. Sett ing x~ = Ux~* / (1  + 5), 

l _< k, we obtain that  for every choice of  signs p l , . . . ,  Pk and all i _< n, 

k k 

k k 

: 

_ L \ I =  1 

k k 

< (1 + 5 p, a~,t,sx~ /(  + - zi,, 
U s = l  ~ ' 1 = 1  

k k 

[ ( E a  x**) - ( l + 5 ) Z i , s ]  <_ Ps i,l,s l 
L - - l=  1 

k k k 

<_ p~ItZ... , i,l,~ t ) - z i , 8  + 5  p~zi,~ < 5 ~ + 5 ,  a s i l T i l ] < l .  
_ L - - l =  1 - -  _ 

k , k Thus E~=,lx  (Et=iai,l,~xt) -x*(zi,~)l < 5i +5 ,  for all x* • B x - .  If we define 

S: X* --+ V by Sx* = y~k_ 1 x*(xl)el, we see that  S is w*-cont inuous  and IlSll _< 1. 

Indeed, for the latter assertion we observe that  for every choice of  signs P l , . . . ,  Pk, 
_ ( **~k and the fact that  ][ E~=I pixy*I] < 1, by the definition of  the sequence ~x t ] I=1  

tlvjll < 1 for j < q, and IIT,~li < 1. It follows now, by the choice of  U, that  

II ~k=l  PtXtll <-- 1 for every choice of  signs P l , . . . ,  Pk, and therefore IISII < 1. 

We deduce that  [IRiSx* - Tix* II < 5i + 5 for all x* • Bx.  and every i < n. 

Hence ]IRIS - Till < 5i + e for all i < n. Finally, 

k 

tlSf  - vjtl  = Z 
1=1 

k 

--E 
l = l  

k 

--E 
l = l  

](1 + 5 ) - l  f j ( U x ~  *) - vj,l] 

] ( 1  + 5 ) - l x ~ * ( f j )  - vj,l[ 
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- -  ,~(1 + ,~)-l l lvj[ I  < 6. 

The  proof  of the proposi t ion is now complete.  | 

Proo f  o f  Theorem 3.2: We first choose Oi < 5i so tha t  IIRiTn - Till < 0i and 

[IR~vj - T J j l l  < 0~ for all j <_ q and i _< n. We then  choose 0 < 6o < (5i - 0i) /4  

for all i _< n, and a sequence (6,~) of posit ive scalars such tha t  oo < co. ~ m = l  (:m 

Propos i t ion  3.3 yields a w*-continuous linear opera to r  So: X* -+ V, [IS01[ _< 1, 

such tha t  I[RiSo - Till < Oi + eo for i _< n, and I I S o f j  - vjt I < co, for j < q. 

We next  apply  Proposi t ion  3.3 for " n " =  1, " R I " =  i dv ,  " T I " =  So, "51"= eo 

and " e " = q ,  to obta in  a w*-continuous linear opera to r  S~: X* ~ V, I]S~II _< 1, 

so tha t  IlS0 - sil l  < eo + q and I IS l f j  - v i i i  < 61, for j _< q. Continuing in this 

fashion we construct  w*-continuous linear opera tors  Sin: X *  ~ V with I]Smll <_ 1 

and such tha t  

I I S m - ,  - s,~11 < 6m-1  d- 6m, IlSmf~ - *'~11 < 6m, for all  j _< q, m C N. 

I t  is clear tha t  the sequence of opera tors  (Sin) converges in norm to a w*- 

continuous linear opera tor  T: X* --+ Y such tha t  I[Tll < 1 and T f j  = vj ,  j <_ q. 

In addi t ion to tha t  we have 

m--1 

IIS,~ - Soil < 60 + 2 ~ 6~ + 6~, 
i =1  

r e > l ,  

and thus liT - Soil < 360. We conclude tha t  

I]RiT - Til[ <_ []Ri(T - So)[I + JlR~So - T~Jl 

< 0 i + 4 6 0 < 5 ~ , i < n .  | 

COROLLARY 3.4: Let  X be an Ll -predual  and let V be a subspace of  X*  iso- 

metric  to f~. A s s u m e  that  there exist  collections o f  vectors (fJ)y=lq C e x t ( B z .  ) 

and q f q (v j ) j= 1 C B y ,  wi th  ( J) j=l  linearly independent ,  so that  every linear oper- 

ator R: X *  --+ X *  satisfying R f j  =- vj for all j < q, also satisfies R I V  = idv .  

Then there exists a w*-continuous contractive project ion P: X*  --+ V,  such that  

P f j  = vj for all j <_ q. 

Proof: We apply  Theorem 3.2 for n = 1, R1 = idv ,  T1 = 0 and 61 > 1, to 

obta in  a w*-continuous linear opera tor  P:  X* -+ V, IlPII _< 1, so tha t  P f j  = vj 

for all j _< q. Our  assumpt ions  yield t ha t  P is the desired projection.  | 
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Remark: We note that Lemma 3.1 and Corollary 3.2 of [10] yield for every e > 0 

a w*-continuous projection P: X* ~ V, IIPll <_ 1 + e, such that P f j  = vj for all 
j<_q. 

4. M a i n  resul t s  

In this section we present the proofs of the results mentioned in the introduction. 

Proof of Theorem 1.1: Assume K is infinite and let (e~) be an enumeration of 

K.  (The argument for finite K is implicitly contained in the proof of the infinite 

case.) It is clear that (e*) is isometrically equivalent to the usual /Fbasis .  Set 

Yn = [e~,...  e*], n E N and let (hn) be a null sequence of positive scalars. We shall 

inductively construct w*-continuous contractive projections Pn: X* --~ Yn such 

that ]IPkP~ - Pk[] < 5k, whenever k _< n. Pz is selected by applying Corollary 
n 3.4 for the subspace Y1 and the vectors f l  = vl = el. Suppose (Pi)i=l have 

been selected so that []PiPj - Pill < 5i whenever i < j < n. Apply Theorem 3.2 

= "T . . . . . .  R . . . .  for "V" Yn+l, ~ - Pi, ~ - Pi]Yn+l, i < n, and the collections of vectors 
~fff ~q ~ ( e , ~ n + l  ~{~ ~q , ,  {~*~n+l J ) j = l  - -  ~ j ] j = l '  ~ , ' J ] j = l  - -  ~ , c j J j = l ,  in o r d e r  to  obtain a w * - c o n t i n u o u s  

linear operator P~+I: X* --+ Y~+I, l]Pn+ll] _< 1, such that P~+le~ = e~ for all 

j < n + 1, and I]P~P,~+~ - P~I] < 5i for all i < n. Clearly, Pn+~ is the required 

projection onto Y,~+I. This completes the inductive construction. The assertion 

of the theorem now follows from Proposition 3.1. | 

Proof of Corollary 1.2: Clearly, K is linearly independent. When K is fi- 

nite the assertion follows immediately from Theorem 1.1 as [K] is isometric to 

~KI = C(K)*. If K is infinite let (e*) be an enumeration of g and set Y = [(e*)]. 

Of course (e*) is isometrically equivalent to the usual /1-basis, and applying 

the Choquet representation and the Krein-Millman theorems, we infer that 

~-6 ~* (K  U - K )  = By .  A classical result [12] yields that Y is w*-closed in X*. 

It is not hard to see (cf. also Lemma 2 of [2]) that Y is w*-isometric to C(K)*. 

The result follows from Theorem 1.1. | 

Proof o[ Corollary 1.3: We regard B x .  in its w*-topology and set H = ex t (Bx . ) .  

Since X is separable and X* is non-separable, H is an uncountable G6-subset of 

B x . .  It follows that H is an uncountable Polish space in its relative w*-topology. 

We will show that H contains a w*-compact subset L homeomorphic to the 

Cantor set A, such that L N ( - L )  = q}. Indeed, let a: H --+ H denote negation 

(ah = -h ) .  Then a is a fixed-point free homeomorphism on the uncountable 

Polish space H and therefore there exists an uncountable relatively open subset 
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G of H such that  G N a G  = O. By a classical result G contains a compact subset 

L homeomorphic to the Cantor set which clearly satisfies L A ( - L )  = 0. 

I t  is clear that  L contains homeomorphs of all countable compact metric spaces. 

Corollary 1.2 now yields that  X contains subspaces isometric to C ( K ) ,  for every 

countable compact metric space K.  Because X is separable, a result of Bourgain 

(Proposition 9 of [4]) implies that  X contains a subspace isometric to C(A).  The 

existence of a contractively complemented subspace of X isometric to C(A) now 

follows from a result of Pelczynski [22]. | 

Proof  of Theorem 1.4: We first choose an infinite w*-convergent subsequence 

e* * = w * -  l immeMe*.  Clearly, Ilx•ll _< 1. If  x o ( m ) m e M  of (e*) and set x 0 * = 0 

then Z = [(em)meM ] is w*-closed in X* by Lemma 1 of [2]. We deduce from 

Theorem 1.1 that  Z is the range of a w*-continuous contractive projection in 

X*. It  is easy to see that  if (rn) is an enumeration of M then the subspace 

Y = [ ( e *  - e*2,~_ 1)] is the range of a w*-continuous contractive projection in Z. 

Hence by composing the projections previously obtained we see that  the assertion 

of the theorem holds in this case. 
oo We shall next deal with the case of x~ ¢ 0. Suppose that  x~ = ~ j = l  aje~ and 

choose a sequence of positive scalars (ei) such that  o0 < 1. Choose also nl  E E i = I  ~i 

N so that  ~ j > n l  laJl < el ~ j < ~  lajl. We shall inductively construct increasing 
m ~ n oo sequences ( k)k=l C M and ( k)k=l C N with n k < m 2 k - 1  < m 2 k  < nk+l, and 

w*-continuous contractive projections Pk: X* ~ Yk, where Yk = [u* : i < k] and 

u k* = (e*,~2~ - e*m~_l )/2, k C N, so that  the following conditions are fulfilled: 

(5) 

(6) 

(7) 

(s) 

(9) 

(10) 

E l a j l < e i E t a j l ,  i c N .  
j>nl j<nl  

Pie i = O, j <_ nl ,  while ]lPieill < ~-~e,, 
l<i 

j<_nl " 
p *  * p *  • _ 

iem~ ~ = u j ,  iem2~_ 1 = --uj, j < i, i C N. 
j--1 

IlPiPj - Pill < ~ el, i < j in N. 
l=i 

IIPiem~ll < ei, j E { 2 / - 1 , 2 I } ,  i < l i n N .  

j < _ n l ,  i>_2. 

Once this is accomplished, condition (9) will enable us to apply Proposition 

3.1 and deduce that  Y = [(u~)] is the range of a w*-continuous projection in 
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X*. Note that  Y is w*-closed in X* by Lemma 1 of [2] as (u~) is isometrically 

equivalent to the usual It-basis. 

We first choose ml < m2 in M with ml > nl ,  and apply Corollary 3.4 for 

" " -  * * * and . = 0  "Y"= Y1, "q"= n1+2,  f j  - ej (j <_ nl) ,  " f q - l " =  em~, "fq"-- em 2, "v3" 

(j _< nl) ,  "Vq-1 . . . . .  = - u l ,  Vq"= u 1.* We obtain a w*-continuous contractive 

projection PI: X* --+ Y1 such that  Ple~ = 0 for all j < nl.  
n k {mA2k k Suppose that  we have constructed ( i)i=l, ~ *Ji=l and (Pi)i=I so that condi- 

tions (5)-(10) are satisfied. We next choose nk+l > mZk SO that (5) is satisfied for 

i = k + 1. By (5) and (7) of the induction hypothesis we infer that ]lPix~[] < ei, 

for i < k. We can therefore choose m2k+t < m2k+2 in M with m2k+l > nk+l, 
such that IIPiem:k+lll < ei and I]P/e~2k+21 ] < ei for all i < k. Hence (10) is 

satisfied for l = k + 1. 

We next put q = nk+l + 2 and set f j  = e~, for j < n k + l ,  fq-1 = e* and 
- -  / 2 k + l  

fq e* We claim that there exist vectors q "~ rn2k+2" (Vj)j= 1 in Bgk+ ~ so that 

k 

(11) IIvjll < E e l ,  j <_ nl.  
1=1 

(12) vj = Pke~, j e (nx,nk+l], 

(la) E = o. 
j~_nk+l 

k 

(14) [[_P/fj - Pivjl I < E ~l, 
l=i  

Vq - 1  ~ - -?£k-bl ,  Vq = ' g k + l "  

i < k ,  j < q .  

Having achieved this and taking into account (9) of the induction hypothesis, 

we employ Theorem 3.2 for "V"=  Yk+~, "n"=  k, "5~"= Y~=i ez, "T/"= Pi, 

"R . . . .  PilYk+l (i < k), and the collections of vectors q q - - (fJ)j=l ,  (vJ)j=l described 

above, to find a w*-continuous linear operator Pk+l: X* --+ Yk+l, IIPk+l]l _< 1, 

such that IIP~Pk+I - P~[I < Y~k=iet, for all i < k, and Pk+lf j  = vj for all j < q. 

It is easy to verify that Pk+l is a projection onto Yk+l so that (n ~k+l {m32k+2 k i l i .= l  , k z l i = l  

and tP  .~k+l satisfy conditions (5)-(10). k z l i = l  

The collection q (vj)j=nl+l is explicitly defined in (12). It remains to define 

(vj)j= 1. We first choose scalars (bi,z), where i < k and l E (nk, nk+l], such that 
. k k Pkel = ~ i = l  bi,tu*" Note that ~i=1  Ibi,t] < 1 for every l E (nk,nk+l] since 

}]Pk]l = 1. We also define scalars (Pi)/=lk by 

tE(nk,n~+l] 
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k 
and set Pi, j  = sg(aj)pi for i < k and j _ hi.  Observe that ~ i = i  [Pil < £k, by (5) 
of the induction hypothesis. We now set 

k 

vj= Pke~ + E pi,ju*, j <_nl. 
i=l 

It follows now by (6) of the induction hypothesis that (11) is satisfied. To establish 

(13) we have 

E 
j<_nk+l 

ajvj = E ajvj + E ajPke~ 
j<nl  jC(nl,nk+l] 

k 

= E a J E  Oi,ju*+ E ajPke; 
j ~ n l  i=1 j~nk+l 

k 

: Z laJl E piu~ + E ajPke; + E 
j~_nl i=1 j~_nk jC(nk ,nk+l] 

k 

= - E E atb~,tu: + E ajPke;, 
i=l IE(nk,nk+l] jE(nk,nk+l] 

k 

= -  E a'Eb~,lu* + E ajPke; 
1E(nk,nk+l] i=1 jC(nk,nk+l] 

=- - E alPke; + E ajPke~ = O. 
IC(nk,nk+l] jE(nk,nk+l] 

ajPk   

by (7) 

Finally, we show that (14) holds. Indeed, when j C { q - l ,  q}, this is a consequence 
of the choice of m2k+l and m2k+2. When j E (nl, nk+l] the assertion follows from 

(9) of the induction hypothesis. When j < nl it follows from (9) of the induction 
k hypothesis and the fact that E i = I  IPi[ < ek" | 

Proof of Corollary 1.5: ] If X* is non-separable the assertion follows from 

Corollary 1.3. If X* is separable, then ext (Bx.)  is countable and X* is isometric 

to t l .  Let (e*) be a basis for X* isometrically equivalent to the usual tl-basis, 

and choose a w*-convergent subsequence ( e * )  of (e*) according to Theorem 1.4. 

Let Y = [(e*~ - e*,~2n_~)]. Then it is easy to see that Y is w*-isometric to e~. 

The result follows from Theorem 1.4. | 

Our last corollary is a special case of the structural result for separable 

Ll-preduals established in [20] and [15]. 
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COROLLARY 4.1: Suppose that  X* is isometric to ~1. Then there exists a se- 

quence (En) of finite-dimensional subspaces of X such that E ,  C En+l for all n, 

each E ,  is isometric to ~o, and Un°°=l En is dense in X.  

Proo~ Let (e*) be a basis for X* isometrically equivalent to the usual il-basis. 

Let Y, = [e* : i < n], n C N, and let (~,) be a sequence of positive scalars such 

that  ~-~n~__l 5n < oo. The argument in the proof of Theorem 1.1 now yields a 

sequence (P , )  of w*-continuous contractive projections in X* with I m P ,  -- Y~ 

and such that  HPkPn - Pkll < 5k whenever k < n. Given k < n in N, we set 

Q'~ --- Pk""  P,. Clearly Q~ is a w*-continuous contractive projection onto Yk. 

Moreover, our assumptions yield that  ItQk ,+1 - Qk II < ~,~, for all n >_ k and 

thus the sequence of operators (Q~)n>_k converges in norm to a w*-continuous 
m . n contractive projection Qk from X* onto Yk. It  is easily seen that  Qk Ql -- Qk 

whenever k < I < m <_ n and hence QkQl = Qk when k <_ I. 

We now let En = Q'Y*.  En is naturally identified to a subspace of X as 

Q~ is w*-continuous, and of course it is isometric t o / ~  for all n E N. Since 

QnQn+l = Q~ we deduce that  En c E , + I  for all n E N. It  is also easily verified 

that  Q* acts as a contractive projection from X onto E , .  Rainwater's theorem 
• , OO E now yields that  h m ,  Q,x  = x, weakly, for all x c X and thus U~=I , is dense 

in X. | 

Remark: 
1. We note that  the proof of Corollary 1.5 that  appears in [27] makes use of 

the structural result established in [20] and [15]. 

2. Theorem 1.4 is no longer valid if we consider isomorphic ~l-preduals. 

Indeed, it is shown in [5] that  there exist isomorphic ~l-preduals which 

do not contain isomorphic copies of Co. 

3. According to a result of Fonf [7], every Banach space X such that  ex t (Bx .  ) 

is countable contains a subspace isomorphic to co. 

It  was shown in [11] that  every separable Ll-predual  is isometric to a quotient 

of C(A).  It  is an open problem [2] whether every l l -predual  is isomorphic, or 

even almost isometric, to a quotient of C(K) for some countable compact metric 

space K.  

Question: Suppose X is an /1 -p redua l  such that  for some e > 0 and some 

countable ordinal a,  the c-Szlenk index of X [25] exceeds w ~. Does X contain a 

contractively complemented subspace isometric to C0(w~")? Does X contain a 

subspace isomorphic to C(w ~ ) ?  
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