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ABSTRACT

It is shown that for an Li-predual space X and a countable linearly
independent subset of ext(Bx ) whose norm-closed linear span Y in X*
is w*-closed, there exists a w*-continuous contractive projection from
X* onto Y. This result combined with those of Pelczynski and Bour-
gain yields a simple proof of the Lazar-Lindenstrauss theorem that every
separable Lji-predual with non-separable dual contains a contractively
complemented subspace isometric to C(A), the Banach space of func-
tions continuous on the Cantor discontinuum A.

It is further shown that if X* is isometric to #1 and (e}) is a basis
for X* isometrically equivalent to the usual £;-basis, then there exists
a w*-convergent subsequence (e;, ) of (e},) such that the closed linear

subspace of X* generated by the sequence (e}, — €ms,_,) 18 the range

of a w*-continuous contractive projection in X*. This yields a new proof
of Zippin's result that co is isometric to a contractively complemented
subspace of X.

1. Introduction

A Banach space X is said to be an L-predual provided its dual X* is isometric
to Li(p) for some measure space (2, %, ). Perhaps the most natural example
of an L;-predual is C(K), the Banach space of real-valued functions continuous
on the compact Hausdorff space K, under the supremum norm. L;-preduals
were the subject of an extensive study in the late 1960’s and early 1970’s. For
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a detailed survey of results on Li-preduals we refer to [13]. For the connection
between Li-preduals and infinite-dimensional convexity we refer to the recent
survey article [8].

For some time it was thought that every L;-predual is isomorphic to a C(K)-
space for suitable K, but the example given by Benyamini and Lindenstrauss [3]
disproved this. The present paper is concerned with the existence of subspaces of
a separable infinite-dimensional L;-predual X, isometric to C'(K)-spaces. It was
proven by Zippin [27] that X contains a contractively complemented subspace
isometric to cg. When X* is non-separable, Lazar and Lindenstrauss [16] proved
that X contains a contractively complemented subspace isometric to C'(A), where
A denotes the Cantor discontinuum. These results complement each other in the
sense that neither of them implies the other.

In the present paper we demonstrate a unified approach towards these results.
Our method consists of establishing Theorem 3.2 which describes a technique for
constructing a strictly increasing sequence (V;,) of finite-dimensional subspaces
of X*, where each V,, is isometric to some K’f", for which there exists an almost
commuting sequence (P,) of w*-continuous contractive projections in X* such
that InP, = Vo, n € N. We recall here that a sequence (P,) of uniformly
bounded projections in a Banach space E is said to be almost commuting,
if limg sup,, > ||PsPn — Pkl] = 0. The proof of Theorem 3.2 is an elementary
application of the principle of local reflexivity [17], [10]. We apply Theorem 3.2
in order to provide an alternative proof for the following result

THEOREM 1.1: Let X be an L,-predual and let K be a countable subset of
ext(Bx») such that K N (—~K) = 0. Suppose that the norm-closed linear span 'Y
of K isw*-closed in X*. Then there exists a w*-continuous contractive projection
from X* onto Y.

We remark that Theorem 1.1 is a consequence of the following result formulated
by Lazar and Lindenstrauss as Corollary 1 in [16]:

Suppose that X is a Banach space so that X* is isometric to Li(u). Let F be
a face of Bx- and denote by H the conver hull of F U (—F). Assume that H is
w*-closed and metrizable. Then, there exists a w*-continuous, affine, symmetric
retraction of Bx« onto H.

Evidently, this result yields Theorem 1.1. However, the authors of [16] do not
offer a detailed proof of this result and moreover, via their preceding discussion,
seem to require that the face F be w*-closed. Note that if F' is w*-closed, so is
H but the converse is not true in general. We also note that the proof of the
aforementioned result that appears in [13] is false. Specifically, the map ¢ defined
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in the proof of the Corollary on page 224 of [13] is not convex.
Theorem 1.1 has applications in the study of ¢;-preduals [1], [9]. As a conse-
quence of Theorem 1.1 we obtain

COROLLARY 1.2: Let X be a separable L,-predual and let K be a countable,
w*-compact subset of ext(Bx-) such that K N (—K) = . Then there exists a
contractively complemented subspace of X isometric to C(K).

This corollary combined with the results of Pelczynski [22] and Bourgain {4]
yields the next

COROLLARY 1.3: Let X be a separable L,-predual such that X* is non-separable.
Then there exists a contractively complemented subspace of X isometric to C(A).

This result was obtained in [16] with a different method. Their proof is based
on a remarkable affine version of Michael’s selection theorem [19] and makes use
of a non-trivial result established in [14].

Another application of Theorem 3.2 is the following

THEOREM 1.4: Let X be a Banach space such that X* is isometric to £,, and let
(er) be a basis for X* isometrically equivalent to the usual £1-basis. Then there
exists a w*-convergent subsequence (e}, ) of (e},) such that the subspace gener-
ated by the sequence (e},, —ey, ) is the range of a w*-continuous contractive
projection in X*.

Theorem 1.4 combined with Corollary 1.3 yields an alternative proof of Zippin’s
result [27]

COROLLARY 1.5: Every separable infinite-dimensional Li-predual X contains a
contractively complemented subspace isometric to cg.

2. Preliminaries

We shall make use of standard Banach space facts and terminology as may be
found in [18]. In this section we review some of the necessary concepts. All
Banach spaces under consideration will be over the field of real numbers. By the
term subspace of a Banach space X we shall mean a closed linear subspace.
We let Bx stand for the closed unit ball of X, while X* denotes its topological
dual. A subspace Y of X is said to be complemented if it is the range of a
bounded linear projection P: X — X. When ||P|| = 1, Y is a contractively
complemented subspace of X.
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£1 denotes the Banach space of absolutely summable sequences under the norm
given by the sum of the absolute values of the coordinates. The usual £;-basis
is the Schauder basis of ¢; consisting of sequences having exactly one coordinate
equal to 1 and vanishing at the rest of the coordinates. £%, where k € N, is the k-
dimensional subspace of £, spanned by the first ¥ members of the usual £;-basis.
A sequence (z,,) in some Banach space is isometrically equivalent to the usual
£y-basis, if || Y5, aizs|l = Yoy lail, for all n € N and scalar sequences (a;)7 -
A finite sequence (z;)¥_; in some Banach space is isometrically equivalent to the
usual £5-basis, if || Zle aizil| = 28, lasl, for all scalar sequences (a;)k_;.

cq stands for the Banach space of null sequences under the norm given by the
supremum of the absolute values of the coordinates. £, denotes the Banach
space R” under the norm given by the maximum of the absolute values of the
coordinates.

Given a measure space (Q,%, ) with u positive, L1(p) denotes the Banach
space of equivalence classes of absolutely integrable functions on € under
the norm ||f|| = [, |fldu. Leo(pt) denotes the Banach space of equivalence
classes of essentially bounded X-measurable functions on  under the norm
€855UD,e0 'f(w)l

An Li-predual is a Banach space X such that X* is isometric to L;(u) for
some measure space (2, %, ). According to a result of Pelezynski [21], Propo-
sition 1.3, there exists another measure space (€,Y,v) with L;(v) isometric
to Li(u) and such that Li(v)* is canonically isometric to Loo(v). Thus in the
sequel, by an L;-predual we shall mean a Banach space X with X™* isometric to
some Ly(p) such that Li(p)* is canonically isometric to Lo ().

Given a linear topological space V and A C V, we let co(A) denote the convex
hull of A. Let now K be a convex subset of V. A point z € K is called an
extreme point, if whenever y, z are in K and z = ay + (1 — a)z for some
0<a<1l1,then r =y = z. We let ext(K) denote the set of extreme points
of K. It is well known that for an L;-predual space X with X* isometric to
Li(p), ext(Bx-) consists precisely of functions of the form ox4/u(A), where
o € {-1,1}, A is an atom with 0 < p(A) < co and x4 stands for the indicator
function of A.

We next recall the important principle of local reflexivity [17], [10] (cf. also
[26]).

THEOREM 2.1: Let X be a Banach space and let E C X** and F' C X* be finite-
dimensional subspaces. Given ¢ > 0, there exists an invertible linear operator
T: E — X such that |T|||T|re| < 1+ T|ENX = idpnx, and f(Te) = e(f)
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forall f € F ande € E.

3. A construction of w*-continuous contractive projections

This section is devoted to the proof of Theorem 3.2 which provides a method of
constructing w*-continuous contractive projections onto certain finite-
dimensional subspaces of X* = L;(u), isometric to £¥. Repeated applications
of Theorem 3.2 will in turn enable us to construct a sequence (P,) of almost ‘
commuting w*-continuous contractive projections in X* such that (ImP,) is
strictly increasing and Im P, is isometric to some E’f", for all n € N. In order
to construct w*-continuous projections onto subspaces of X* isometric to £;, we
shall make use of the following

PRrRoOPOSITION 3.1: Let X be a Banach space and let Y be a w*-closed subspace
of X*. Assume that there exists a net {Y)}xea of w*-closed subspaces of Y with
Yy, C Yy, whenever Ay < Xg in A, and such that | J,c, Y is norm-dense in Y.
Assume further that each Y) is the range of a w*- continuous projection Py in
X*, so that sup, || Py|| < M < oo, and limy supy<,, ||PAF, — Px|| = 0. Then there
exists a w*-continuous projection P from X* onto Y with ||P}| < M.

Proof: By is w*-compact. By Tychonoff’s theorem we infer that K =
[lI;-eB,. MBy is compact when endowed with the cartesian topology. We can
now identify {P\}xca with a net in K to obtain a sub-net {Px }xea of {Pr}rea
which converges to an element P of K. Since Y is w*-closed in X*, P induces
a bounded linear operator from X* into Y, which we still denote by P. Clearly
Pz* = w* —limyepar Pyx*, for all z* € X* and thus ||P|| < M. Our assumptions
yield that Pz* = z*, for all z* € U)\e A Y and hence P is a projection onto Y.

We next demonstrate that P is w*-continuous. By a classical result [12] it
suffices to show that for every net (z}) in Bx» such that w* — lim, z}, = 0, we
have that w* —lim, Pz} = 0. Note that ||Pz}|| < M, for all v, and let y* € M By
be any w*-cluster point of (Pz}),. We will show that y* = 0. To this end set
ox = supy<, |PAP, — Pall. Then [[PAP — Py|| < 45, as Py is w*-continuous.
It follows that ||P\Pz} — Paz}|| < 6y, for all A and v, and thus as P is w*-
continuous, we obtain that |Pyy*|| < 8y, for all A € A. Hence Py* = 0. Because
y* € Y and P is a projection onto Y, we deduce that y* = 0, completing the
proof of the assertion. |

We next pass to the key result which is related to Lemma 3.1 and Corollary
3.2 of [10].
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THEOREM 3.2: Let X be an L;-predual and let V be a subspace of X™* isometric
to £5. Let (8;)7_; be a finite sequence of positive scalars and assume that there
exist w*-continuous linear operators T;: X* — V, ||Ti|| € 1, ¢ < n, as well as
linear operators R;: V — V, ||R;|| < 1, ¢ < n, so that |RT,, — T;|| < §; for all
i < n. Assume further that there exist collections of vectors (f;)i_, C ext(Bx-)
and (v;)]_; C By, with (f;)}_, linearly independent, such that || Ryv; — Ti f;]| <
d; for all i < n and j < q. Then there exists a w*-continuous linear operator
T: X* =V, |T|| <1, such that |R;T — Ti|| < é; for all i < n, and T f; = v; for
allj <q.

The proof of this result will follow after establishing the next

ProprosITION 3.3: Under the hypothesis of Theorem 3.2, for every ¢ > 0
there exists a w*-continuous linear operator S: X* — V, ||S|| < 1, such that
[IR:S — Tl < 8; + e and ||Sf; — vl < e foralli <mn and j < gq.

Proof: Let (e;)F_, be a basis for V isometrically equivalent to the usual £¥-basis.
Since T; is w*-continuous and ||T;|| < 1, there exist vectors (z,-,l){;l in Bx such
that T;z* = Zlew*(zi,l)el for all z* € X*. There also exist scalars (a;s),
i< n,l <k s <k, such that R;e; = }:’::1 aiis€s for all 4 < nand [ < k.
Finally, there exist scalars (v;;), j < ¢, I <k, such that v; = Zle vjie, § < q.
Observe that for z* € X* and ¢ < n we have

k k k k
* *
E (E ai,l,sx*(zn,l))es = E z (zn,l) E A3 1,s€s = RT,z".
=1 s=1

s=1 ‘i=1

Hence, Zfﬂ‘(Zf:l il sT* (2n1)) — x*(zi,s)l = ||R;Thz* — T;x*|| < &, for all
z* € Bx~ and i < n. Thus

k k
s=1 =1

for all choices of signs (p,)¥_; and all i < n.
Similarly, Riv; = Z’:zl(z;czl a;1,sV5,1)€s for all i <n, j < ¢, and thus

k
<Z ai,t,svj,t> - fi(zi)
=1

We first show that there exist vectors (z}*)f., in Bx.- = By_(,) such that

o (f;) = vjy for all L < k, j < g, and |35, ps[(S0, ainez]®) — 2is]|| < 6,
for all i < n and all choices of signs (p;)%_;. Indeed, let o1,...,0, be signs and

<6

(1)

k

@ >

= “Rivj - lef]“ < 51'7 J S q, 1 S n.
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let Ay,..., A, be distinct atoms in (2,3, u) such that f; = o;x4,/p(4;) for
all j < ¢g. We can assume without loss of generality that the A;’s are pairwise
disjoint. We define (z}*)¥_, in Lo (p) as follows:

oitl4j = o0, §<q  while g QN | 4; =zl | 45,
Jj<q i<q

where we regard z,; as an element of X** = L (u). Clearly, ||7*|| < 1 and
z*(f;) = fA,- 05v;5005X 4, [(A;)dp = vjy, for all j < g and I < k.
Given signs p;, ..., pr and i < n we have that

[@ wiai”) = oY
Z Ps [(Z a,;,z,szn,z> - zi,s}

=1

(3)

<8 by (1)

We next fix signs p1,..., 0k, 2 < n and j < q. We set

k k
H; (1) = Zps [(Z ai,l,sUjUj,z) - Z,‘,s(t)}, t € Aj.
s=1 =1

We claim that |H; ;| < 6;, p-almost everywhere in A;. Indeed, note first that
fAJ_ zisdp = ojp(A;j) fi{zis) for all s <k, and thus

(4) I/A,- Hz',jdu] =

éps[(i @i 503V (A )> - UjN(Aj)fj(Zi,s)]
<lz; ai,z,svj,z) — filzis)

On the other hand, setting B; ; = {t € A;: |H; ;(t)| > §;} and taking into account
that A; is an atom, we infer that u(B; ;) = 0. Indeed, otherwise, u(B; ;) =
p{A;) and thus [H; ;| > J;, p-almost everywhere on A;. But also, as A; is an
atom, H; ; has a constant sign p-almost everywhere on A; and so | f A, H; jdp| >
dip(A;), contradicting (4). Therefore, pu(B; ;) = 0 and hence |H; ;| < 6;, p-almost
everywhere in A;, as claimed. We conclude that

< biu(4;), by (2).

IIZ ps| Zausx, — zis)|Aj|| <6, foralli<n, j<g,
s=1
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and all choices of signs (p,)¥_;. Combining with (3) we deduce that

k k
1370 (O aigeri™) = 2] < 6,
=1

s=1
for all i < n and all choices of signs (ps)%_,.

We next set W = [{z}* : 1 <k} U{z5:i<n,s <k} and choose 0 < § < e.
Theorem 2.1 yields a linear operator U: W — X, ||U|| < 1+, so that U X NW =
idxnw and g(f;) = f;(Ug), for all g € W and j < q. Setting z; = Uz}*/(1+9),
[ < k, we obtain that for every choice of signs py,...,px and all i < n,

k k
Zps [(Z ai,l,sxl) - zi,s:|
s=1 =1
k r, k
Z Ps <Z ai,l,sU-'E?*/(l + 6)) - Uzz',s]
s=1 - M=1
k k
<@+ 00| (Sesaic/049) 5]
s=1 =1

k r k
< Zps (Z Gi,z,siﬂ}k*) ~(1+ 6)312,3:'
s=1 - M=1
k r k k
< Zps (Z ai,l,sx?*> - zi,s] +46 Zpszi,s <6;+0, as “Tz” <1
s=1 - Ml=1

s=1

Thus Zf=1!$* (Zle ai,z,sxl) —z* (zi,s)l < é; + 4, for all z* € Bx.. If we define
S: X* 5 Vby Sz* = Zle z*(z1)er, we see that S is w*-continuous and || S|| < 1.
Indeed, for the latter assertion we observe that for every choice of signs py, . .., pk,
I Zle pizi*]| < 1, by the definition of the sequence (z}*)F_, and the fact that
flojll < 1 for j < g, and ||T,|] < 1. It follows now, by the choice of U, that
I Ele pixil] < 1 for every choice of signs py,. .., pi, and therefore ||S|} < 1.

We deduce that ||R;Sz* — T;z*|| < §; + 4 for all z* € Bx~ and every i < n.
Hence ||R;S — T;|| < é; + € for all i < n. Finally,

k
1815 = vill = D_ 1f5(wm) = v,

=1

M=

|(1+8)7 5 (Uzp™) =y

=1

[
M=

(14 6)" e (f;) — vial

~
Il

1
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=6(1+6) " Hjws|| < e
The proof of the proposition is now complete. |

Proof of Theorem 3.2: We first choose #; < §; so that ||R;T,, — T3|| < 6; and
|Riv; — Tif;l| < 6; for all j < ¢ and ¢ < n. We then choose 0 < o < (J; — 0;)/4
for all # < n, and a sequence (¢,,) of positive scalars such that > o-_ €, < €.

Proposition 3.3 yields a w*-continuous linear operator Sp: X* =V, ||S|| < 1,
such that ||R;So — Til| < 8; + €p for ¢ < n, and [|Sof; — v;{l < €, for j < q.

[

We next apply Proposition 3.3 for “n”= 1, “R;"= idy, “Ty"= So, “61"= €0
and “€”=ey, to obtain a w*-continuous linear operator S;: X* — V, |I15;] < 1,
so that ||So — Si|| < €0 + €1 and ||S1f; — v;l| < €1, for j < g. Continuing in this
fashion we construct w*-continuous linear operators Sp,: X* — V with ||Sp, || < 1

and such that
1Sm—1— Smll < €m—1+ €m, [|Smfi — vi|| < €m, forallj<gq, meN

It is clear that the sequence of operators (S,) converges in norm to a w*-
continuous linear operator T: X* — V such that ||T)| < 1 and Tf; = vj, j < q.
In addition to that we have

m—1

HSm—SO||<60+ZZei+em, m > 1,

i=1
and thus ||T' — Sp|| < 3ep. We conclude that

BT — Tl < ||Rs(T = So)l + |1 RiSo — Ti|
<0;+4eg < 65,1 < n. [ |

COROLLARY 3.4: Let X be an Ly-predual and let V be a subspace of X* iso-
metric to £%. Assume that there exist collections of vectors ( fj)gzl C ext(Bx~)
and (v;)]_, C Bv, with (f;)_, linearly independent, so that every linear oper-
ator R: X* — X* satisfying Rf; = v; for all j < q, also satisfies R|V = idy.
Then there exists a w*-continuous contractive projection P: X* — V, such that
Pf;=wv; forallj <q.

Proof: We apply Theorem 3.2 for n = 1, Ry = idy, T = 0 and §, > 1, to
obtain a w*-continuous linear operator P: X* — V, ||P|| < 1, so that Pf; = v;
for all j < ¢. Our assumptions yield that P is the desired projection. |
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Remark: We note that Lemima 3.1 and Corollary 3.2 of [10] yield for every € > 0
a w*-continuous projection P: X* — V, ||P|| < 1 +¢, such that Pf; = v; for all
I<q

4. Main results

In this section we present the proofs of the results mentioned in the introduction.

Proof of Theorem 1.1: Assume K is infinite and let (e};) be an enumeration of
K. (The argument for finite K is implicitly contained in the proof of the infinite
case.) It is clear that (e}) is isometrically equivalent to the usual £;-basis. Set
Y, =[e},...€e:],n € Nand let (8,) be a null sequence of positive scalars. We shall
inductively construct w*-continuous contractive projections P,: X* — Y, such
that || PP, — Px|| < 0k, whenever k£ < n. P; is selected by applying Corollary
3.4 for the subspace Y; and the vectors fi = vy = e}. Suppose (F;)?_; have
been selected so that [|P;P; — P;|| < 6; whenever ¢ < j < n. Apply Theorem 3.2
for “V’= Y41, “Iy"= P, “R;”"= P;|Yy41, @ < n, and the collections of vectors
“(fi)i=1"= (e;);':ll, “(v3)5=1"= (e;);’ill, in order to obtain a w*-continuous
linear operator Ppy1: X* — Yoy, [[Pagall < 1, such that Phy1€] = e for all
j<n+1,and |PPyy1 — Bi|| < §; for all § < n. Clearly, P,4. is the required
projection onto Y, ;. This completes the inductive construction. The assertion

of the theorem now follows from Proposition 3.1. |

Proof of Corollary 1.2: Clearly, K is linearly independent. When K is fi-
nite the assertion follows immediately from Theorem 1.1 as [K] is isometric to
Z'IK' = C(K)*. If K is infinite let (e},) be an enumeration of K and set Y = [(e};)].
Of course {(e},) is isometrically equivalent to the usual £;-basis, and applying
the Choquet representation and the Krein-Millman theorems, we infer that
¥ (KU —-K) = By. A classical result [12] yields that Y is w*-closed in X*.
It is not hard to see (cf. also Lemma 2 of [2]) that Y is w*-isometric to C(K)*.
The result follows from Theorem 1.1. |

Proof of Corollary 1.3: We regard Bx- in its w*-topology and set H = ext(Bx- ).
Since X is separable and X* is non-separable, H is an uncountable Gs-subset of
Bx.. It follows that H is an uncountable Polish space in its relative w*-topology.
We will show that H contains a w*-compact subset L homeomorphic to the
Cantor set A, such that L N (—L) = . Indeed, let o: H — H denote negation
(oh = —h). Then o is a fixed-point free homeomorphism on the uncountable
Polish space H and therefore there exists an uncountable relatively open subset
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G of H such that GN oG = (. By a classical result G contains a compact subset
L homeomorphic to the Cantor set which clearly satisfies LN (—~L) = 0.

It is clear that L contains homeomorphs of all countable compact metric spaces.
Corollary 1.2 now yields that X contains subspaces isometric to C'(K), for every
countable compact metric space K. Because X is separable, a result of Bourgain
(Proposition 9 of [4]) implies that X contains a subspace isometric to C(A). The
existence of a contractively complemented subspace of X isometric to C(A) now
follows from a result of Pelczynski [22]. |

Proof of Theorem 1.4: We first choose an infinite w*-convergent subsequence
(e, )menm of (e}) and set zf = w* — limmepr€f,. Clearly, ||z3l| < 1. 25 =0
then Z = [(e},)men] is w*-closed in X* by Lemma 1 of [2]. We deduce from
Theorem 1.1 that Z is the range of a w*-continuous contractive projection in
X*. It is easy to see that if (r,) is an enumeration of M then the subspace
Y =[(e}, —er, _.)]is the range of a w*-continuous contractive projection in Z.
Hence by composing the projections previously obtained we see that the assertion
of the theorem holds in this case.

We shall next deal with the case of 2§ # 0. Suppose that z§ = E;‘;l ajej and
choose a sequence of positive scalars (e;) such that Y ;2 e; < 1. Choose also n; €
Nso that 37, laj| < €13, laj|. We shall inductively construct increasing
sequences (mg)pe, C M and (ng)52; C N with ng < mag_1 < max < ngy1, and
w*-continuous contractive projections Py: X* — Yj, where Yy = [u} : ¢ < k] and

*

Uy = (€ — €man_1)/2, k €N, s0 that the following conditions are fulfilled:

(5) dolejl<e Y logl, ieN

i>n; J<m
(6) Pie; =0, j<ny, while|Pej|<d & j<m, i>2

1<
(7) H(Z aje;f> =0, i¢N.
J<n;
(8) ‘Pie:n,2j = ’U/;, He:nzj_l = _U;, .7 < i’ ieN
j—1
©®  IRP-Rl<} & i<jnN

I=1

(10) Pieq, |l <€, je{20-1,21}, i<linN

Once this is accomplished, condition (9) will enable us to apply Proposition
3.1 and deduce that Y = [(u})] is the range of a w*-continuous projection in
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X*. Note that Y is w*-closed in X* by Lemma 1 of [2] as (u}) is isometrically
equivalent to the usual 4;-basis.
We ﬁrst choose m; < mg in M with m; > n;, and apply Corollary 3.4 for

113 ”__ [19% B “ ”__ * [13 W ok 4, N __
V’= q =71 +2 f] 6 (J < nl) fq— €m1» fq = €my» and v = 0
(7 < nl), “Vg—1"= —uj, “vq”— u}. We obtain a w*-continuous contractive

projection P: X* — Y; such that Prej = 0 for all j <n,.

Suppose that we have constructed (n;)%_;, (m;), and (P;)%_; so that condi-
tions (5)-(10) are satisfied. We next choose ng41 > mag so that (5) is satisfied for
i=Fk+1. By (5) and (7) of the induction hypothesis we infer that ||Pzj]| < €,
for ¢ < k. We can therefore choose mogt+1 < mogy2 in M with mag1 > ng41,
such that ||Per,, . || < € and ||Pe | < ¢ for all i < k. Hence (10) is
satisfied for [ = k + 1.

We next put ¢ = ngy1 + 2 and set f; = e for j < ng41, fo-1 = €} and

M2k+1
fq = €y, We claim that there exist vectors (v;)7_; in By,,, so that

m2k+2'

k
(11) losll <> e, G<m

=1
(12) vj = Pke;, jE€ (nl,nk.H], Ug—1 = —UZ+1, Vg = Uz+1.
(13) Z Cl,j'()j =0.

VRS LTEY
k

(14) ”‘P‘Lf] - Plv]” < Zela ) S k7 .7 S q.

=1

Having achieved this and taking into account (9 ) of the induction hypothesis,
we employ Theorem 3.2 for “V7’= Yiyy, “n"= k, “6;= Zz €, “T"= P,

“R;”= P;|Yixy1 (i < k), and the collections of vectors (fi)i=1 (v;)j=; described
above, to find a w*-continuous linear operator Pry1: X* — Yip1, | Pesa]l < 1,
such that ||P;Pr+1 — Bl < ZL €, for all i <k, and Ppy1f; =v; forall j <gq.
It is easy to verify that Py is a projection onto Yi11 so that (n;)*f}, (m,)2}?
and (P;)** satisfy conditions (5)-(10).

The collection (v5)]_,, 4, is explicitly defined in (12). It remains to define
(v5)72,. We first choose scalars (b;1), where i < k and I € (ng, nk+1], such that
Pre; = Zfﬂ b;u;. Note that Ez 11big] < 1 for every I € (ng,nk41] since
| Px]| = 1. We also define scalars (p;)%_; by

pi = (— aib; l) Z la1,

le(ng,ne+1] j<n
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and set p; ; = sg(a;)p; for i <k and j < ny. Observe that Z?zl lpi| < eg, by (5)
of the induction hypothesis. We now set

k

vj = PkG; + Zpi,ju;, J<ny.
1=1

It follows now by (6) of the induction hypothesis that (11) is satisfied. To establish
(13) we have

*
Do oami= Y 0t Yo aPe;

J<nK41 j<m JE(n1.nkt1)
B ST I S
7<n, =1 I<ng 1
=2 ’affzﬂi“? Y ahet Y, 4P
j<ny 1=1 j<nk JE(nE.nr41]
k
= — Z Z alb”u;‘ + Z aije;, by (7)
1=1 l€(ng,npy1] j€(nrnrs1]
k
Y WY Y ang
le(ny,npq1] =1 JE(Mg,np11]
= — Z alPkef + Z aije; =0.
le(ny 4] j€(mr i1l

Finally, we show that (14) holds. Indeed, when j € {g—1, ¢}, this is a consequence
of the choice of mggy1 and mogyo. When j € (ny, ng41] the assertion follows from
(9) of the induction hypothesis. When j < nj it follows from (9) of the induction
hypothesis and the fact that Zle lpi| < €. 1

Proof of Corollary 1.5: ] If X* is non-separable the assertion follows from
Corollary 1.3. If X* is separable, then ext{Bx~) is countable and X* is isometric
to £1. Let (e}) be a basis for X* isometrically equivalent to the usual £;-basis,
and choose a w*-convergent subsequence (e, ) of (e;,) according to Theorem 1.4.
Let Y = [(e},,. — €m,._,)]- Then it is easy to see that Y is w*-isometric to cf.
The result follows from Theorem 1.4. [ ]

Our last corollary is a special case of the structural result for separable
Li-preduals established in [20] and [15].
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COROLLARY 4.1: Suppose that X™ is isometric to £;. Then there exists a se-
quence (Ey) of finite-dimensional subspaces of X such that E, C E,, for all n,
each E, is isometric to £, and \J,- | E,, is dense in X.

Proof: Let (e) be a basis for X* isometrically equivalent to the usual £;-basis.
Let Y, = [ef : i <n],n €N, and let (d,) be a sequence of positive scalars such
that Y>> | 8, < oo. The argument in the proof of Theorem 1.1 now yields a
sequence (P,) of w*-continuous contractive projections in X* with Im P, = Y,
and such that |PyP, — Pyl < & whenever k < n. Given k < n in N, we set
Qp = Py -+ P,. Clearly Q} is a w*-continuous contractive projection onto Yj.
Moreover, our assumptions yield that |QF — QF*'|| < &, for all n > k and
thus the sequence of operators (Q})n>k converges in norm to a w*-continuous
contractive projection Qg from X* onto Y. It is easily seen that Q7'Q = QF
whenever £ <! < m < n and hence Qx@Q; = Q) when k£ <.

We now let E, = QXY,r. E, is naturally identified to a subspace of X as
Q. is w*-continuous, and of course it is isometric to £ for all n € N. Since
QnQny1 = @, we deduce that E, C E,;q for all n € N. It is also easily verified
that Q7 acts as a contractive projection from X onto E,. Rainwater’s theorem
now yields that lim, @z = z, weakly, for all £ € X and thus UZO=1 E,, is dense
in X. 1

Remark:

1. We note that the proof of Corollary 1.5 that appears in [27] makes use of
the structural result established in [20] and [15].

2. Theorem 1.4 is no longer valid if we consider isomorphic ¢;-preduals.
Indeed, it is shown in [5] that there exist isomorphic ¢;-preduals which
do not contain isomorphic copies of cg.

3. According to a result of Fonf {7], every Banach space X such that ext(Bx»)
is countable contains a subspace isomorphic to ¢g.

It was shown in [11] that every separable L;-predual is isometric to a quotient
of C(A). It is an open problem [2] whether every {;-predual is isomorphic, or
even almost isometric, to a quotient of C{K) for some countable compact metric
space K.

Question: Suppose X is an £;-predual such that for some ¢ > 0 and some
countable ordinal a, the e-Szlenk index of X [25] exceeds w*. Does X contain a
contractively complemented subspace isometric to Co(w“’a)? Does X contain a
subspace isomorphic to C(w”")?
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